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ABSTRACT

Using the method of molecular dynamics, we have examined the decay of an

instantaneously imposed heat pulse on an equilibrium model fluid similar to super-critical

argon.  The spatial extent of the initial pulse is quite small  on the order of 100 cubic

nanometers; the amount of energy added to the system is only 5% of the total system

kinetic energy.  This small pulse decays quite rapidly, within several picoseconds, but the

decay proceeds more slowly than predictions based on the hydrodynamic equations.

During the first picosecond of the decay, the kinetic energy is not equipartitioned and a

very fast process of energy transfer from kinetic energy to potential energy takes place.  A

good fit to the molecular dynamics data is obtained using a simple linear superposition of

the hydrodynamic and free streaming theories.

I.  Introduction

In this paper we examine the earliest stages of the time evolution of a heat pulse in a

model fluid similar to super-critical argon.  On the nanometer length scale and picosecond

time scale we find, not surprisingly, significant deviations from hydrodynamic behavior.
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Our purpose is to identify some of the non-hydrodynamic features of the heat-pulse

evolution on the picosecond time scale and their relation to hydrodynamics.  Our study is

based on molecular dynamics calculations that indicate:  (1) the relaxation of the heat pulse

is slower than that predicted by hydrodynamics; (2) during the first picosecond there is no

local equilibrium in the disturbed region; (3) at the very earliest times system behavior is

dominated by the simple 'free streaming' of particles; (4) there is no indication of

hyperbolic heat transfer; (5) the rapid decay of the temperature field is associated with an

exchange between the kinetic and potential energies of the system; and (6) a simple, ad hoc,

superposition of the free streaming and hydrodynamic theories describes the observed

density, velocity and temperature fields within their uncertainties.

In Section II we define how the heat pulse is initiated as well as the molecular

dynamics method used to calculate system properties as they evolve in space and time.

Hydrodynamic and free-streaming theories for this system are developed in Section III and

compared to the molecular dynamics results.  In Section IV we explain an ad hoc approach

that adequately describes the system's behavior.

II.  Molecular Dynamics

The Verlet algorithm [1] is used to generate the phase space trajectories of N =

18000 particles in a rectangular volume, V, with periodic boundary conditions.  The

spherically-symmetric, pairwise-additive, inter-particle force is determined by the Lennard-

Jones/spline potential [2]:  ( ) ( ) ]//[4)( 612 rrr σσεϕ −= , 0 < r < rc ; = a(r - rs)
2 +

b(r - rs)
3, rc < r < rs; = 0 , rs < r , where r  is the distance between two particles,

( ) )/(3211/24192 2
cra ε−= , )/)(61009/387072( 3

crb ε−= , σ6/1)7/26(=cr , and



3

cs rr )48/67(= .  This potential is a finite-ranged modification of the well known Lennard-

Jones 12-6 potential of depth ε and diameter σ, designed specifically to avoid the numerical

problems associated with the truncation of the infinite-ranged Lennard-Jones potential, viz.

discontinuities in the interparticle force.  rc is the point of inflection of the attractive tail of

the Lennard-Jones potential.  rs, a, and b are determined by requiring the Lennard-

Jones/spline potential and its first two derivatives to be continuous at rc.

The particle mass, m, the Boltzmann constant kB, and the Lennard-Jones parameters,

ε  and σ , allow the definition of a set of dimensionless variables (denoted by a superscript

*) that are used to generate the molecular dynamics trajectories and define other derived

quantities.  The time unit is σ(m/ε)1/2, the length unit is σ, the velocity unit is (ε/m)1/2 , the

energy unit is ε, and the temperature unit is ε/kB.  If we set KkB 8.119/ =ε ,

meters1010405.3 −×=σ , and kmolkgm /94.39= , values appropriate for Ar, then 1* =t

corresponds to 2.16 ps, 1* =x  to 0.3405 nm, 1* =v  to 568 km/h, 5.0* =n  to 21.03

kmol/m3, and 2* =T  to 239.6 K.

II.1  The initial phase points

The ensemble of initial phase points of the system are constructed in two steps.

First a system phase point is sampled from an equilibrium molecular dynamics ensemble

(N, V, E, and P = 0, fixed, where E is the total energy and P the total momentum). The

average *T of the ensemble is 2.0.  Then, the initial 'heat' or 'temperature' pulse is created

by multiplying the velocity of every particle with x-coordinates in the interval (0.45Lx,
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0.55Lx) by (3/2)1/2, where V = LxLyLz.  Since the particles in this region have a velocity

distribution that is essentially [3] Maxwellian, this rescaling does not change the form of the

velocity distribution but it does change its dimensionless 'temperature' from 2.0 to 3.0 in the

region of the pulse.  The total energy of the system has increased to E', but the potential

energy remains constant.

The initial states formed in this manner are not equilibrium states, although they

have some features of equilibrium states:  (1) the spatial configuration of particles has all

the characteristics of an equilibrium state with T* = 2; (2)  the two local velocity

distributions are (essentially) Maxwellian; and (3) the local kinetic energy is equipartioned.

However, the local kinetic energy is not uniform in the x-direction and the average total

kinetic energy deviates significantly from its equilibrium value for a system with total

energy E'.

II.2  Relaxation to equilibrium

In order to quantify how this system evolves in time, we use the method of

molecular dynamics to generate the phase-space trajectories.  A time step of 002.0* =∆t ,

is used to advance an initial phase point forward in time.  At selected time intervals various

physical properties, e.g., the local number density, are calculated.  The average of these

properties over a sample of EN  members of the initial ensemble is then determined.

The spatial variations of system properties are determined by dividing the volume

into 100 thin slabs of size zyx LLL ××100/ . In all of the calculations reported here N =

18000 and n* is either 0.5 or 0.2, so that Lx/σ = 10 or 13.572, respectively.  Ly and Lz were
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chosen much larger than Lx (Ly=Lz=6Lx) so that layers perpendicular to the x-axis as thin as

Lx/100 contain substantial numbers of particles.    The lth slab is centered about

100/)2/1( xl Llx −=  .  A physical property ),( txQ l  of the system is calculated by
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where ][ j
xil rχ  is the characteristic function for layer l.  We define the local temperature in

terms of the kinetic energy in the local center of mass frame.  In our system we define

component temperatures by
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where .,, zoryx=α   The (average total) temperature ),( txT l  is given by

( )),(),(),(
3

1
),( txTtxTtxTtxT lzlylxl ++= .  When local equilibrium is established T is

equivalent to the local thermodynamic temperature.

The ensemble averaged dynamics, and consequently also the properties of this

system, are calculated over time intervals short enough so that the initial disturbance of the
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heat pulse does not reach either the x = 0 or x = Lx boundary.  For the case n* = 0.5 this

time interval is t* = 0.4; for n* = 0.2 it is t* = 0.6; and in both cases NE = 60.  As shown in

Figs. 1 and 2, the expansion of the initial pulse generates changes in the density and

velocity fields.  These disturbances propagate at roughly the (equilibrium) sound speed.

T(x,t) and (Tz+ Ty)/Tx are shown in Figs. 3 and 4, respectively.  The spreading of the initial

temperature field in the x-direction matches the disturbances in the density and velocity

fields.  The initial temperature field decays in magnitude very rapidly. During the time

intervals examined local equilibrium is never obtained in the disturbed regions since (Tz +

Ty)/Tx is significantly different from the equipartition value of  2.  Although T(x,t) remains

symmetric and unimodal, as a function of x, the x-dependence of Tx is significantly

different from that of Ty and Tz , which leads to the appearance of a small ‘shoulder in

T(x,t).    The lack of equipartition and the 'shoulders' observed in T(x,t) appear to be

connected to the formation of the sound wave.  We did not observe any qualitative

differences between the n* = 0.2 and n* = 0.5 cases, except that the pulse spreads more

slowly at the lower density.  [A single error bar is shown in each figure to give a general

impression of the statistical certainty of the results.]

III.  Theory

We find, as explained below, that even though local equilibrium is not established,

the hydrodynamic solution captures many of the qualitative features of the time evolution

of the pulse.  However, hydrodynamics predicts a faster spreading of the initial pulse than

observed, perhaps indicating that hydrodynamic heat conduction (in local equilibrium)
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provides an optimal mode of energy transfer and for very short times that 'ordered' mode is

not sufficiently established.

At very short times the particle motion is not affected by the interparticle

interactions because the average force on particles is zero in the initial state.  The 'free-

streaming' behavior of the system, including Tx, Ty, and Tz, can then be explicitly evaluated.

Although the free streaming theory (FS) is quantitatively correct only for very short times,

it provides a remarkably good qualitatively description of the density and velocity fields

over the entire duration of the simulations.  However, since it ignores interparticle

interactions it does not account for the relaxation of the potential energy of the system and

the decay of TFS(x,t) is much slower than observed.

As we show below, the observed behavior lies between the predictions of these two

theories.

III.1  Hydrodynamics

The initial state is symmetric and uniform in the y- and z-directions so the complete

set of hydrodynamic equations describing the density, velocity, and temperature fields are

one dimensional.  The initial conditions are:  0)0,(,2.05.0/)0,( 3 == xvormxn xσ , and

kBT/ε =  3.0 for x in [0.45Lx, 0.55Lx] and kBT/ε = 2.0 elsewhere.  The boundary conditions

are periodic.

A numerical solution of these equations is obtained using a standard forward-time,

space-centered algorithm [4].  We have assumed that the specific heat at constant volume,

the shear viscosity, the bulk viscosity, and the thermal conductivity are constant and have
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obtained their values from independent molecular dynamics calculations at the initial

density and T* = 2; we used an equilibrium equation of state for the Lennard-Jones/spline

system.

Given that local equilibrium, in particular the equipartition of kinetic energy, has

not been established, it is remarkable that the hydrodynamic description, nH, H
xv , TH,

shown in Figs. 1, 2, and 3, is not too far off.  The hydrodynamic solution decays and

spreads too fast, however.  The temperature field does not develop the shoulders observed

in T(x,t) and the velocity field appears to be qualitatively different than vx in the center of

the system.

III.2  Free streaming

If we make a Taylor series expansion of the position and velocity variables about t =

0, then the position and velocity of particle i at time t can be expressed in terms of the

initial positions and velocities, )0()0( ii vandr
rr

, as well as other force related quantities that

characterize the initial state.  The most elementary, short-time, approximation to these

expansions is the free-streaming (no forces) approximation (FS):  tvrtr ii
FS

i )0()0()(
rrr

+= ;

.)0()( i
FS

i vtv
rr

=   The time interval over which this approximation is accurate depends on the

influence of the interparticle forces, but even in dense fluids there is a time interval small

enough such that free streaming equations are a good approximation.  For the initial states

considered here, )()( tvandtr FS
i

FS
i

rr  are not accurate approximations (for arbitrary i) for

more than a few molecular dynamics time steps, roughly 0.01 in reduced time units.

However, we find that ensemble averaged physical properties are accurate over a somewhat
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longer time interval and over the time interval of the molecular dynamics simulations they

display most of the qualitative features seen in the molecular dynamics calculations.

Since the initial states we consider have a uniform density and the velocity

distributions are Maxwellian, the ensemble-averaged density, velocity, and kinetic energy

fields are given by

∫ −−= )0,;()0,(),( twrwftwrnwdtrn FS rrrvrrr
   ,

∫ −−= )0,;()0,(),(),( twrwftwrnwwdtrvtrn FSFS rrrvrrrrr
   ,

∫ −−−= )0,;()0,()(
3

),(),( 2 twrwftwrnvwwd
m

trTktrn FSFS
B

FS rrrvrrrrrr
α  ,

where )0,;( twrwf
rrr

−  is the Maxwell velocity distribution at position twr
rr −  at t = 0.

The FS density and velocity fields, as well as FS
x

FS
z

FS
y TTT /)( + , are shown in Figs.

1, 2 and 4 respectively.  For 5.0* =n  the FS approximations match the MD results for

times 15.0* ≤t ; for 15.0* >t  the FS approximations deviate significantly from the MD

results, but still match the general qualitative spatial variations.  ),( txT FS  is shown in Fig.

3.  For n* = 0.5 and t* < 0.05 and for n* = 0.2 and t* < 0.1 ),( txT FS gives a good

description of the temperature field; beyond these time there are significant deviations from

),( txT .  We note, however, that ),( txT FS  does exhibit the 'shouldered pulse' feature seen

in the MD results.

In the FS approximation the temperature pulse does not decay in magnitude as

rapidly or spread out spatially as fast as ),( txT .  Since the FS kinetic energy is conserved

there is no mechanism for the transfer of energy to the potential energy field.  This appears
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to be the reason that the FS pulse magnitude remains much larger than the MD results.  The

effects of this kinetic/potential relaxation can be easily incorporated into the FS equations

by replacing the temperature )0,( twrT
vr

−  in )0,;( twrwf
rrr

−  by a time-dependent effective

temperature.  This effective temperature can be determined from a molecular dynamics

study of kinetic/potential relaxation [5].

IV.  An Ad Hoc Approach

The initial stage of the heat-pulse decay is, in many respects, dominated by the

simple 'free-streaming' motion of the particles  not by hydrodynamics.  At later times, but

before true local equilibrium has been established, the decay appears to be described well

by hydrodynamics.  We have not yet developed a consistent theory that spans these two

stages.  However, we find that a simple ad hoc method that can be used until a

comprehensive theory is developed.

The ad hoc method is simply a linear superposition of the hydrodynamic and FS

theories (the LS approach).  For a given density, the linear superposition approach is

defined by

,),())(1(),()(),( txQttxQttxQ HFSLS γγ −+=

where the superscript LS denotes the linear superposition quantity and Q is either n, vx, or

T.  The time-dependent parameter γ should approach 1 as t approaches 0 and should

approach 0 as t becomes 'large'.  For a given t and Q, γ can be determined empirically by

the method of least squares.  We find that at fixed t, γ is nearly the same for all choices of

Q, and for a given Q, γ decreases exponentially with time .  Thus, we set [ ]τγ /exp)( tt −= ,
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where τ is independent of t and Q.  Then τ becomes a time that characterizes the duration of

the free-streaming dominance.

In the case of self diffusion, free streaming dominates at times for which

),0(/)( →→ tasmTtktD B  where ∫ ><=
t

xixi svvdstD
0

)()0()( .  This suggests

[ ].//)( mTkD B∞<τ   Using the self-diffusion coefficient data of Kincaid et al. [6] we find

that setting [ ]mTkD B //)(
5

4
∞=τ  allows the LS approach to fit the simulation data to

within its statistical uncertainty as shown in Figs. 1, 2, and 3.  The density dependence of

D(∞) matches the density dependence of τ.  [τ* = 0.52 for n* = 0.2 and τ* = 0.16 for n* =

0.5.]

V.  Final Remarks

The initial stage of the time evolution of the heat pulse considered here is distinctly

non-hydrodynamic.  For the systems studied, the duration of this stage is on the order of a

picosecond.  For heat pulses of macroscopic size the deviations from hydrodynamic

behavior will be negligible.  On the nanometer scale, however, significant heat transfer

takes place but at a rate slower than hydrodynamics.  This phenomenon may be important

in processes such as pulsed laser annealing of silicon [7] and the development of nano

devices.

It has been suggested by many authors [8] that heat conduction should be described

by hyperbolic equations -- essentially a damped wave equation.  Here, as for the case of self

diffusion [9], we have not observed any evidence of a propagating temperature wave.
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LIST OF SYMBOLS

N number of particles

V volume

E, E' total energy

P total momentum

r position

t, ∆t time

m particle mass

n N/V

v velocity

T, Tx, Ty, Tz temperature

Q system property

D self-diffusion coefficient

NE number of ensemble samples

kB Boltzmann's constant

w
r

velocity

f Maxwell velocity distribution

ϕ interparticle potential

ba,,, σε interparticle potential parameters

χ characteristic function
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γ linear superposition parameter

τ characteristic time

superscripts

* dimensionless variable

FS free streaming approximation

H hydrodynamics

LS linear superposition approximation

subscripts

i particle-number index

j ensemble-member index

l layer number
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FIGURE CAPTIONS

Fig. 1  The density, n*(x,t), as a function of position, x*, for the case n* = 0.5 and t* = 0.2.

[molecular dynamics •, hydrodynamics H, free streaming FS, linear superposition LS]

Fig. 2  The local fluid velocity in the x-direction, vx*(x,t), as a function of position, x*, for

the case n* = 0.5 and t* = 0.2.  [molecular dynamics •, hydrodynamics H, free streaming

FS, linear superposition LS]

Fig. 3  The temperature, T*(x,t), as a function of position, x*, for the case n* = 0.5 and t* =

0.2.  [molecular dynamics •, hydrodynamics H, free streaming FS, linear superposition LS]

Fig. 4  The component temperature ratio, (Ty+Tz)/Tx as a function of position, x*, for the

case n* = 0.5 and t* = 0.1.  In equilibrium systems the ratio is equal to 2.[molecular

dynamics •, free streaming FS]
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FIGURE 1
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FIGURE 2
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FIGURE 3
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FIGURE 4
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